Chapter 12 Outline Solutions

The solutions to most of these exercises are given in separately named documents.
Exercises 12.1, 12.2: See separate spreadsheet files.

Exercise 12.3: Omitted; written report required.

Exercise 12.4: see separate spreadsheet file. The Promotion estimates are as follows (parameter estimate multiplied by number of weeks):

	Duration
	Parameter estimate
	Promo effect
	Non-promo sales
	R2 (Adj)

	4 weeks
	20.90
	83.60
	59.90
	0.358

	5 weeks
	14.95
	74.75
	60.60
	0.197

	6 weeks
	11.44
	68.68
	61.08
	0.117



The estimated non-promotion sales are about the same, but spreading the promotion effect over more weeks reduces the overall estimate of its impact. The higher value of R2 (adj) suggests that the 4-week window is more appropriate.

Exercise 12.5
Suppose the first period of the promotion is at time T.
The sales model for period T is then

	 
In the first period of the promotion, D1T=1 and D2T=0
Therefore Sales = Base line+β0.

In the second period, 

ST is higher by an amount β0. and D1T=1, therefore the promotional effect above the standard baseline is  
Exercises 12.6 – 12.8: See separate spreadsheet files

Exercise 12.9
The dataset has four levels: Total, Country, Gender and Age.  At the lowest level there are 16 time series. With these we can construct the following hierarchy:
[image: ]
We retain the last two years as a test set to evaluate the performance of the various hierarchical approaches. All base forecasts are created using exponential smoothing. The model of exponential smoothing is selected automatically by using AIC (corrected for small sample sizes). 
For the bottom-up forecast we need to produce forecasts only for the 16 level three time series and aggregate these up. For the top-down forecast, we produce forecasts for all time series. Then we break down the level 0 forecast (top level) using the forecasted proportions of the lower levels. 
We also produce middle-out forecasts, using level 1 to produce the forecasts. Then these are aggregated and dissagregated as before. 
We record the accuracy using MAPE% and we get:
            BU     TD     MO
Total    2.831  2.039  2.657
Den      8.628  6.494  7.968
Fin     11.031  9.944  8.648
Nor      4.239  4.701  4.756
Swe      8.226  4.491  6.149
DenF     8.255  7.066  7.936
DenM     9.594  7.033  8.759
FinF     8.362  8.623  7.420
FinM    12.512 10.717  9.357
NorF     5.715  5.596  5.453
NorM     3.763  4.759  5.127
SweF     7.740  4.918  6.441
SweM     8.568  4.400  6.065
DenF<25  8.998 10.720  9.311
DenF>25 14.342 12.163 13.940
DenM<25  9.197  7.866  8.612
DenM>25 10.186  7.638  9.342
FinF<25 12.774 12.921 12.094
FinF>25  7.982  7.938  6.930
FinM<25  9.269  8.804  8.520
FinM>25 15.671 13.977 12.630
NorF<25 18.436 18.987 20.725
NorF>25 13.778 13.270 12.502
NorM<25 20.579 22.304 24.184
NorM>25 11.293 10.100  8.675
SweF<25 12.964 10.612 11.871
SweF>25  6.365  4.103  5.023
SweM<25 14.203  9.928 11.544
SweM>25  5.842  2.941  3.551

Or more summarised, for each level of the hierarchy:
               BU     TD     MO
Total       2.831  2.039  2.657
L1-Country  8.031  6.408  6.880
L2-Gender   8.064  6.639  7.070
L3-Age     11.992 10.892 11.216

Exercise 12.10
We extend the solution of exercise 12.9 with two more hierarchical forecasting methods, based on optimal weights.  We use two methods to calculate the combination weights for the optimal combination: (i) the forecast variances (wls); and, the number of series per hierarchical level (struct).
With these we get the following summary MAPE %:
               BU     TD     MO Opt-wls Opt-struct
Total       2.831  2.039  2.657   2.212      2.301
L1-Country  8.031  6.408  6.880   6.930      6.998
L2-Gender   8.064  6.639  7.070   7.065      7.115
L3-Age     11.992 10.892 11.216  11.272     11.324

Observe that the optimal combination hierarchical forecasting is more accurate at certain levels, but not always. 

Exercise 12.11
The unemployment dataset allows for multiple ways to reach from the bottom level to the top:
· Age -> Gender -> Country
· Gender -> Age -> Country
· Age -> Country -> Gender
· Country -> Age -> Gender
· Country -> Gender -> Age
· Gender -> Country -> Age
When there is no unique hierarchy, then we deal with grouped time series. In this case we consider all multiple pathways when we enforce aggregation consistency. 
For instance now there are multiple “level 1” series:
[image: ]
We keep the last two years of data as a test set and construct a grouped hierarchy and a pure hierarchy as in exercises 12.9 and 12.10. We produce optimal combination forecasts, where the combination weights are estimated using the complete covariance matrix of the forecast errors at the various levels. All forecasts are produced by using exponential smoothing. 
Note that the number of time series produced by grouped and pure hierarchies is different, due to the middle levels. In order to compare the two approaches we will consider MAPE % at the top and bottom levels only, which are fully comparable. 
                          Grouped Hierarchical
Total                       2.319        2.998
Denmark_Female_Aged 15-24   8.782        8.472
Finland_Female_Aged 15-24  19.273       13.581
Norway_Female_Aged 15-24   21.141       18.696
Sweden_Female_Aged 15-24   11.956       13.650
Denmark_Male_Aged 15-24     9.094        8.490
Finland_Male_Aged 15-24    11.289        8.899
Norway_Male_Aged 15-24     22.518       21.501
Sweden_Male_Aged 15-24     12.623       14.769
Denmark_Female_Aged 25+    14.126       12.813
Finland_Female_Aged 25+     8.457        6.835
Norway_Female_Aged 25+     13.734       13.605
Sweden_Female_Aged 25+      5.261        5.977
Denmark_Male_Aged 25+       9.431        8.639
Finland_Male_Aged 25+      16.084       13.417
Norway_Male_Aged 25+       10.915       10.601
Sweden_Male_Aged 25+        4.956        5.172

Or more summarised:
       Grouped Hierarchical
Total    2.319        2.998
Bottom  12.478       11.570

We can see that the grouped approach results in different forecasts, due to the more aggregation consistency constraints needed to enforce reconciliation of forecasts across all possible groups. The effect on accuracy is mixed, with gains in some series and loses in others. 

Exercise 12.12
We first aggregate the time series into quarterly and yearly levels. The differences between the temporal aggregation levels, in terms of history length and shape are evident by plotting the time series. 
[image: ]
Seasonal diagrams for the monthly and quarterly time series suggest that there is strong seasonality, and potentially some underlying weak trend. The trend is more evident from the normal time series plots. 
[image: ]
[image: ]
We fit ETS models to all time series and we find the following types:
· Monthly:  ETS(M,N,M)
· Quarterly: ETS(M,N,A)
· Yearly: ETS(A,A,N)
Observe that the ETS at monthly and quarterly levels finds seasonality (of different type) and no trend, while on the annual time series additive trend is identified.

Exercise 12.13
We withhold the last year as test set and use the remaining data to fit an appropriate ETS model and forecast the last year. 
Note that the for the monthly time series we produce a 12-step ahead forecast, for the quarterly a 4-step ahead forecast and for the yearly a single-step ahead forecast. Furthermore, we cannot compare the accuracy of the forecast directly, since these have a number of observations and are calculated on different data. To compare them we need to bring them all on the same level. The easiest choice is to aggregate them all to the yearly level. 
Doing that, we can calculate the following MAE values:
  Monthly Quarterly    Yearly 
   78.636    52.936    29.530

The yearly forecast is substantially more accurate. (Note that in exercise 12.12 the yearly ETS model identified the trend in the data.) The additional noise and complexity at the more dissagregate levels, as well as the multiple step-ahead forecasts deteriorated the performance of the monthly and quarterly forecasts. 

Exercise 12.14
We withhold the last year (52 weeks) as a test set and use ARIMA and Temporal Hierarchies (THieF) to produce forecasts.
The identified ARIMA models is:
ARIMA(1,1,2)(1,0,0)[52] with drift         

Coefficients:
          ar1      ma1      ma2    sar1   drift
      -0.2911  -0.1673  -0.4115  0.4334  0.0295
s.e.   0.0054   0.0056      NaN  0.0057  0.0501

sigma^2 estimated as 2.027:  log likelihood=-334.55
AIC=681.09   AICc=681.56   BIC=700.48

We consider two alternative THieF forecasts, each with different weighting for the combination of the forecasts produced at the various temporal aggregation levels. 
The first weights the forecasts according to the number of periods in a year, to account for the structure of the hierarchy (THieF_struct), while the second use the forecast error variance, similar to optimal combinations for cross-sectional data (see exercise 12. 10; THieF_mse). 
The MAE for the test data is:
ARIMA THieF_struct    THieF_mse 
2.060        1.283        1.972 

To better understand why THieF provides more accurate forecasts it is helpful to plot what is happening at each temporal aggregation level (dotted line is base ARIMA, solid blue line is the THieF reconciled forecast). 
[image: ]
Observe that THieF is able to carry modelling information across temporal aggregation levels, resulting in more reliable and accurate forecasts. Also note that only temporal aggregation levels that the potential seasonal signal retains integer frequency are used. Here, these are aggregation levels 1, 2, 4, 13, 26, 52. All other aggregation levels would result in fractional seasonalities and are disregarded by THieF. 

Exercise 12.15
We construct MAPA and temporal hierarchies (THieF) forecasts for the A&E monthly series. The last year is used as a test set, similarly to exercise 12.13. 
MAPA aggregates the series on all levels and fits an ETS at each level
[image: ]
On the other hand, THieF only fits a forecasting model at the levels where any seasonal signal would remain of integer frequency. That is, for monthly data only aggregation levels 1, 2, 3, 4, 6 and 12 are used. 
We calculate MAE for t+1, t+1-t+12 and at a yearly aggregate level.
               ETS    MAPA  THieF
MAE_t1       8.652  37.908  8.588
MAE_monthly 18.578  22.524 18.540
MAE_yearly  78.636 134.277 77.661

Temporal hierarchies provide some improvements over ETS, while in this case MAPA does not provide good forecasts.

Exercise 12.16 (Also see spreadsheet)
We forecast each time series using single exponential smoothing (SES) and Croston’s method. Typically the alpha parameter is between [0.05, 0.30]. For this exercise we will set the parameter to 0.15, but also optimise is using mean squared error (MSE) and mean squared rate error (MSR). 
The following plot provides some example time series
[image: ]
We withhold the last 12 observations as a test set, so that we can evaluate the forecast accuracy. We calculate the mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE). We scale MAE and RMSE by the mean of the actuals, so as to be able to summarise errors across time series. 
An example time series with the forecasts is provided below:
[image: ]
Across all 100 series, the results are:
	
	SES (0.15)
	SES (MSE)
	SES (MSR)
	Croston (0.15)
	Croston (MSE)
	Croston (MSR)

	MAE
	0.805
	0.892
	0.800
	0.812
	0.865
	0.803

	RMSE
	0.97
	1.053
	0.965
	0.975
	1.036
	0.968

	MAPE
	Inf
	Inf
	Inf
	Inf
	Inf
	Inf



Observe that MAPE does not provide any meaningful results, as in the test set there are zero values. This causes division by zero, which results in useless measurements. 
When we allow Croston’s method to have different alpha values for the demand size and intervals, we can improve forecast accuracy further. Increases accuracy is required for better stock planning. Nonetheless, error metrics do not describe well the performance of forecast for intermittent demand time series (as for example MAPE). To better appreciate the performance, as well as the impact on holding costs and out-of-stock it is better to do an inventory simulation. This way the impact of different inventory policies can be evaluated. 

Exercise 12.17
We can characterise intermittent time series based on the average inter-demand interval (p) and the variation of the non-zero demand (CV2).  We can calculate these and characterise the 100 series accordingly. This classification can be useful for choosing a method to forecast the series.
[image: ]
With lead times 3, 6 and 12 we do not need to have month-by-month forecasts, but an accurate lead time demand forecast, i.e. at the aggregate level over 3, 6 or 12 periods.
In the same way, we can look at the properties of the aggregate time series. For lead time L=3 we get:
[image: ]
Observe that most items are non-intermittent now. (We can use this classification to decide what method to use.) We can do the same for higher lead times, L=6:
[image: ]
All products exhibit continuous demand now and conventional exponential smoothing is appropriate. We can now avoid using intermittent demand methods altogether. 
As an example, we run the experiment for L=12 and calculate the accuracy for forecasting the demand over lead time (i.e. the cumulative demand over the 12 periods). 
      SES Croston Aggr-SES
MAE  4.19   4.478    4.025
RMSE 4.19   4.478    4.025

Observe that the forecast produced on the aggregate series is the most accurate, but also the easiest to produce as it does not rely on intermittent time series. 

Exercise 12.18
We extend the solution of exercise 12.17 to include MAPA to our forecasts. 
We provide the results for L=3 here.
       SES Croston Aggr-SES  MAPA
MAE  1.637   1.686    1.752 1.648
RMSE 1.861   1.919    1.993 1.882

The MAPA forecasts consider all intermediate temporal aggregation levels. This typically results in more reliable forecasts, with gains in accuracy (compare against Aggr-SES). 
	

Exercise 12.19 
i. Ice-cream: with horizon of 1 week to 1 month. Seasonality, price, expected short-term weather effects, holidays.
ii. Annual traffic fatalities: vehicles on the road, expected mileage. Any changes in legislation, past fatalities (to take into account changing driving patterns)
iii. US market for tablets over the next five years:  segmented sales to take into account differential adoption by socio-demographics (diffusing). Analogous products, e.g. laptops, Possible economic variables (but unlikely)
iv. Daily energy demand by region and energy course: time horizon needs to be specified. If longer term there are questions of substitution. Short-term seasonalities and weather. Regional effects would require disaggregate weather and seasonality and modelling the regional demands as being correlated should help. For longer term forecasts, changes in regional industrial structure would potentially be important as well as regional economic variables.
v. Probability of an individual defaulting on a credit card payment; this is much researched. It would depend on whether the person is a current customer, in which case their credit history and payment history would be particularly important, or a new customer, in which case the standard variables of income, house ownership, years in the same residence, and various socio-demographic factors would be relevant. Note that certain variables cannot be used in some countries, e.g. race, gender, possibly location of address.
vi. Hourly calls into a credit card company: this would depend on the different types of calls, emergency, statement related, or new business. See Minicase 12.12. A key issue is the contact the company has had with the (potential) customer over the previous few days, e.g. mail shots, billing. Seasonality (time of day, day of week, month), holidays. 

Exercise 12.20:  Omitted; work with own downloaded data files.
Exercise 12.21:  Also, see separate spreadsheet file
First, we plot the time series to get an initial view of the adoption of broadband and mobile in the four markets. 
[image: ]
We can observe that the broadband adoption is still increasing, while for mobile this is not totally clear, especially for Italy. This agrees with the typical statistics that highlight that broadband has not reached all potential consumers. 
We calculate the cumulative adoption, on which we fit the linear, logistic and Gompertz curves. We retain the last four quarters as test set, where we will compare the performance of the competing methods. 
 The resulting coefficients for the various series are:
	Method
	Param.
	FRA Brd
	GER Brd
	ITA Brd
	UK Brd
	France Mob
	GER Mob
	ITA Mob
	UK Mob

	Linear
	Constant
	-96.250
	-123.893
	-55.770
	-88.975
	-107.670
	-222.760
	-184.361
	-147.529

	
	Slope
	17.551
	21.418
	11.015
	16.700
	55.253
	92.186
	82.106
	72.811

	Logistic
	A
	0.004
	0.005
	0.005
	0.005
	0.006
	0.007
	0.008
	0.007

	
	B
	0.065
	0.074
	0.065
	0.063
	0.024
	0.036
	0.034
	0.029

	
	M
	1317.81
	1393.79
	742.29
	1216.18
	7060.55
	8041.65
	7127.18
	7276.77

	Gomp.
	A
	4.648
	4.867
	4.497
	4.595
	3.463
	3.594
	3.552
	3.486

	
	b
	0.045
	0.049
	0.049
	0.049
	0.046
	0.047
	0.049
	0.047

	
	M
	1373.18
	1534.35
	757.61
	1177.77
	3683.39
	6048.11
	5153.74
	4734.6



The linear is estimated using OLS, while the other two using nonlinear optimisation with squared errors. 
Using the test set we calculate the out-of-sample Mean Absolute Percentage Error (MAPE):
	MAPE %
	FRA Brd
	GER Brd
	ITA Brd
	UK Brd
	France Mob
	GER Mob
	ITA Mob
	UK Mob

	Linear
	11.754
	10.652
	8.634
	10.629
	4.490
	4.005
	3.084
	3.849

	Logistic
	1.429
	2.142
	1.776
	1.873
	0.276
	0.249
	0.159
	0.519

	Gompertz
	4.235
	4.119
	4.377
	5.535
	4.883
	4.218
	4.559
	4.717



Across all time series the overall MAPE % is:
	Linear
	Logistic
	Gompertz

	7.14%
	1.05%
	4.58%



The linear method does not capture the eventual saturation in the cumulative adoption and predicts higher levels. Gompertz appears to be overly sensitive, leaving the Logistic as the method of choice. 

To explore for substitution effects we need to explore whether drops in the rate of change of adoption of one medium, can be explained by increases in the rate of change of the other. To do that we construct the following model:
Rate of change of adoption of broadband = b0 + b1 rate of change of adoption of mobile + error
If b1 is negative it implies some substitution. To track this effect locally, we estimate the regression using a rolling window of 16 quarters (4 years). We do not build a regression across the whole sample, as that would result in an average slope connecting the changes in adoption that will not be sensitive enough.
In total we build 35 regressions (across the different estimation windows), for the 4 pairs of mediums. The results are plotted below.
[image: ]
[bookmark: _GoBack]There is some evidence of substitution in the UK (prolonged negative slope), while more recently a similar effect may be starting in Italy. 
Exercise 12.22 and 12.23:  See separate spreadsheet files
Exercise 12.24: Omitted
Exercise 12.25:  The solution is based on a logistic regression and is in a separate spreadsheet file
Exercise 12.26: See separate spreadsheet file
This exercise and 12.25 are demanding exercises. The partial solution here uses SAS’s enterprise miner. If used as a class exercise, the results will be software dependent. 
Exercise 12.27:  We do not provide a solution. Diffusion curves can predict the participation rate by age. To calculate the overall rate is more difficult in that we require the number in each segment. In addition, there is an interesting issue of how a user (or non-user) transitions between segments. It would be more plausible to say once a user, always a user. A simulation model is needed here though this was not what was expected – rather a weighted average of the different diffusion rates
 Exercise 12.28:  Omitted. Issues to take into account if used as an exercise are:
i. Error measures (a variety should be used)
ii. Standardizing across performance measures (though ranks could be used throughout)
iii. Summarizing error measures across variables
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